Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.

نویسندگان

  • Raquel Castillo
  • José-Antonio Fernández
  • Lourdes Gómez-Gómez
چکیده

Crocus sativus is a triploid sterile plant characterized by its long red stigmas, which produce and store significant quantities of the apocarotenoids crocetin and crocin, formed from the oxidative cleavage of zeaxanthin. Here, we investigate the accumulation and the molecular mechanisms that regulate the synthesis of these apocarotenoids during stigma development in C. sativus. We cloned the cDNAs for phytoene synthase, lycopene-beta-cyclase, and beta-ring hydroxylase from C. sativus. With the transition of yellow undeveloped to red fully developed stigmas, an accumulation of zeaxanthin was observed, accompanying the expression of CsPSY, phytoene desaturase, and CsLYCb, and the massive accumulation of CsBCH and CsZCD transcripts. We analyzed the expression of these two transcripts in relation to zeaxanthin and apocarotenoid accumulation in other Crocus species. We observed that only the relative levels of zeaxanthin in the stigma of each cultivar were correlated with the level of CsBCH transcripts. By contrast, the expression levels of CsZCD were not mirrored by changes in the apocarotenoid content, suggesting that the reaction catalyzed by the CsBCH enzyme could be the limiting step in the formation of saffron apocarotenoids in the stigma tissue. Phylogenetic analysis of the CsBCH intron sequences allowed us to determine the relationships among 19 Crocus species and to identify the closely related diploids of C. sativus. In addition, we examined the levels of the carotenoid and apocarotenoid biosynthetic genes in the triploid C. sativus and its closer relatives to determine whether the quantities of these specific mRNAs were additive or not in C. sativus. Transcript levels in saffron were clearly higher and nonadditive, suggesting that, in the triploid gene, regulatory interactions that produce novel effects on carotenoid biosynthesis genes are involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis

Saffron (Crocus sativus L.) is commonly known as world's most expensive spice with rich source of apocarotenoids and possesses magnificent medicinal properties. To understand the molecular basis of apocarotenoid biosynthesis/accumulation, we performed transcriptome sequencing from five different tissues/organs of C. sativus using Illumina platform. After comprehensive optimization of de novo tr...

متن کامل

Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals

Crocus sativus is the source of saffron spice, the processed stigma which accumulates glucosylated apocarotenoids known as crocins. Crocins are found in the stigmas of other Crocuses, determining the colourations observed from pale yellow to dark red. By contrast, tepals in Crocus species display a wider diversity of colours which range from purple, blue, yellow to white. In this study, we inve...

متن کامل

Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus

Crocin biosynthesis in Crocus has been proposed to proceed through a zeaxanthin cleavage pathway catalyzed by carotenoid cleavage dioxygenase 2 (CCD2), and followed by glucosylation reactions catalyzed by CsGT2 (UGT74AD1). In Crocus ancyrensis flowers, crocins with eight (crocin-1), seven (crocin-2), and six glucose (crocin-3) moieties accumulated both in stigma and tepals. We have characterize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 2  شماره 

صفحات  -

تاریخ انتشار 2005